
International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 1

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Cost-Based Query Optimization with Heuristics

Saurabh Kumar,Gaurav Khandelwal,Arjun Varshney,Mukul Arora

Abstract— In today’s computational world,cost of computation is the most significant factor for any database management

system.Searching a query from a database incurs various computational costs like processor time and communication time.Then,

there are costs because of operations like projection, selection, join etc.DBMS strives to process the query in the most efficient way

(in terms of ‘Time’) to produce the answer.In this paper we proposed a novel method for query optimization using heuristic based

approach. In the proposed algorithm,a query is searched using the storage file which shows an improvement with respect to the

earlier query optimization techniques. Also, the improvement increases once the query goes more complicated and for nesting

query.

Index Terms—Heuristic,query,optimization,usage factor,storage file,magic tree,cost,weighted.

————————————————————

1 INTRODUCTION

ATABASE Management Systems(DBMS) have
become a standard tool for shielding the computer
user from details of secondary storage

management.They are designed to improve the
productivity of application programmers and to facilitate
data access by computer-naïve end users. There have been
two major areas of research in database systems.One is the
analysis of data models into which the real world can be
mapped and on which interfaces for different user types
can be built. Such conceptual models include the
hierarchical network, the relational and a number of
semantics-oriented models that have been
reviewed in a large number of surveys[14]. A second area
of interest is the safe and efficient implementation of the
DBMS. Computerized data has become the central resource
of most organizations.Each implementation meant for
production use must take into account by guaranteeing the
safety of the data in the cases of concurrent
access[9],recovery[11] and reorganization[12].
Imagine yourself standing in front of an exquisite buffet
filled with numerous delicacies. Your goal is to try them all
out, but you need to decide in what order. What exchange
of tastes will maximize the overall pleasure of your palate?
Although much lesspleasurable and subjective, that is the
types of problem that query optimizers are called to solve.
Given a query, thereare many plans that a Database
Management System(DBMS) can follow to process it and

produce its answer. All plans are equivalent in terms of
their final output but vary in their cost, i.e., the amount of
time that they need to run. What is the plan that needs the
least amount of time? Such query optimization is absolutely
necessary in a DBMS. The cost difference between two
alternatives can be enormous. The path that a query
traverses through a DBMS until its answer is generated is
shown in Figure 1. The system modules through which it
moves have the following functionality:

The Query Parser checks the validity of the query and then
translates it into an internal form, usually a relational
calculus expression or something equivalent.The Query
Optimizer examines all algebraic expressions that are
equivalent to the given query and chooses the one that is
estimated to be the cheapest.The Code Generator or the
Interpreter transforms the access plan generated by the
optimizer into calls to the query processor. The Query
Processor actually executes the query.

Research in query optimization has quickly acknowledged
the exponential nature of the problem. While certain special
cases can be solved in polynomial time (e.g., chain queries
with no cross-products [1] or acyclic join queries under ASI
cost models [2]), the general case is NP-hard (see [3], [2]).

D

————————————————

 Saurabh Kumar, Gaurav Khandelwal, Arjun Varshney, BITS-PILANI,
HYDERABAD CAMPUS, HYDERABAD, INDIA
{f2008446,f2008437,f2008320}@bits-hyderabad.ac.in

 Mukul Arora, BITS-PILANI, PILANI, RAJASTHAN, INDIA,
f2007070@bits-pilani.ac.in

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 2

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Figure 1: Query flow through a DBMS

Despite the inherent complexity of query optimization,
algorithmic research has traditionally focused on
exhaustive enumeration of alternatives (see [4] for the
classical dynamic programming approach and [5], [6] for a
transformation based approach). As queries become more
complex, exhaustive algorithms simply cannot enumerate
all alternatives in any reasonable amount of time. For
instance, enumerating all join orders for a 15 table star
query takes several minutes in commercial systems (but we
have seen scenarios with queries that join more than 50
tables together). To be able to cope with such complex
queries, several heuristics have been proposed in the
literature[1]. However, previous work is limited to joins
operators (i.e., they do not consider other relational
operators like group-by clauses), do not consider the
presence of indexes (which, as we will see, can drastically
change the landscape of optimal plans), and can still be
inefficient or inadequate in certain scenarios.

For the past twenty years, query optimization has been an
intensively studied area of database system research. Most
modern optimizers are cost-based in that they decide
between execution plans by minimizing the estimated cost
of evaluating the query. A fundamental technique used in
cost estimation is cardinality estimation – optimizers take
as input the cardinalities of tables at the leaves of a query
tree, and then use selectivities of operators in the tree to
estimate the cardinality of the input to operators further up
in the tree. To convert cardinalities to costs, optimizers use
functions that estimate the cost per tuple of each operator.
While this approach is not perfect, it is very effective in
most traditional DBMS applications. However, as we move
to the Internet domain, this approach, in its current form,
may not even apply. The reason for this is that if the leaves
of the query tree correspond to incoming network streams,

not only is their cardinality often not known, in some cases
it may not even be well defined (e.g., in the case of infinite
streams.)

2 RELATED WORK

The seminal paper on cost-based query optimization is [15].

Other optimization models have been proposed, especially

in the areas of parallel query optimization, using cost

models that arenot cardinality-based but instead deal with

resource scheduling and allocation [7], [13]. The Britton-Lee

optimizer could optimize for the first result tuple [17],

while in Mariposa [16] the optimization criterion was a

combination of execution time and resource utilization.

Modeling streaming behavior through input rates and

modeling network traffic as Poisson random processes

have appeared in many contexts, including [3], although to

our knowledge it has not been applied in the context of

query optimization. A lot of work has been carried out in

the areas of non-blocking symmetric join algorithms [2],

[18], [19], which aim at producing plans that do not block

their execution because of slow input streams.Framework

in these indicates that with variable rate sources it is

beneficial to employ such algorithms. In the same context,

methodologies aiming at avoiding blocked parts of an

execution plan at runtime [23] can benefit from framework

of rate optimization by starting with and/or switching to

plans for which the predicted output rate is maximized.

Some has worked on the basic concepts of query processing

and query optimization [20] in the relational database

domain. How a database processes a query as well as some

of the algorithms and rule-sets utilized to produce more

efficient queries was also presented along with the

implementation plan using join ordering to extend the

capabilities of Database. Some worked on SQoUT

Project[21], which focuses on processing structured queries

over relations extracted from text databases

Some related areas of work come from the adaptive query

execution and dynamic re-optimization frameworks of [2]

and [10]. In these frameworks, the main concern is to

dynamically monitor an execution plan and identify points

of sub-optimal performance. Once such points are

identified, the system can choose to reorganize the plan in a

way that is expected to yield better performance. In [10],

such points are detected by incrementally measuring the

cardinalities of partial outputs and comparing them to the

optimizer‘s estimates. If the measured and estimated

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 3

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

cardinalities differ by a substantial amount, the optimizer is

called to generate a better execution plan under the new

information. In [2], the objective is to dynamically adapt

and improve performance by rerouting inputs to particular

operators thus improving overall performance. They

initially choose an execution plan through a heuristic pre-

optimizer and then continuously monitor the executing

plan‘s performance. They also use runtime deviations from

selectivity estimates as a criterion to identify sub-optimal

performance. Work has also been done in the context of

continuous queries over data streams in two directions: the

first one aims at characterizing the behavior of these

queries with respect to their memory requirements [1], [4].

Additionally, [6] deals with identifying and maintaining

stream statistics for sliding window queries.Finally, some

work also fits into the re-optimization frameworks of [12],

[15], which focus on identifying performance bottlenecks of

an already executing plan and ways to overcome them.

Moreover, in a re-optimization framework like the one of

[12], the performance crossing points,framework identified

aids in scheduling when re-optimization should take place.

3 PROPOSED IDEA

As we know, the order of execution of the steps changes the

cost of the execution. In query optimizer, a binary tree is

obtained. In the proposed idea, all the dependent variables

are set to one side of the branch of the tree. Each variable is

assigned some weight in our proposed algorithm and for

simulation purpose,we calculated the cost on the basis of

the total weight. Weight is assigned according to how much

time that variable or operation takes. Higher the

computational time of the execution of the operation,

higher will be the weight of that operation. When a search

query is triggered, it initiates the search of the requested

item. All the items will be at leaf. As we have discussed

earlier, all dependent variables will be on same side of the

branch of the tree obtained from the query from algorithm

1.In the proposed idea we have reordered certain variables

and eliminated certain variables. Suppose there is a nested

query, so running cost of let us say projection is some ―a‖

units. So if in nested query, we run projection for ten times,

then the cost will be 10*‖a‖ units ,while in our proposed

idea we shifted the projection to a state and from there we

need to run the projection in the query for single time and

the cost incurred will be only ―a‖ units.

ALGORITHM 1

Function: creating magic tree.

a) Parsing of the query.

b) Building the tree.

c) Selection operation moves at the head node of the

tree.

d) All subsequent selections are removed.

e) Projection operation moves next to the selection.

f) All subsequent projections are removed.

g) All dependent groups are formed and will branch

to the same side of the tree.

h) Leaf node is a relation,so once we reach

leaf,operation is terminated.

i) Search query is initiated.

j) As soon as the target is found,it moves to the

projection and appropriate functions are

performed.

Heuristics has always proved to be a useful tool.Sometimes

the result may not show an improvement in early stage,but

after sometime it will show an improvement as soon as its

memory is filled with the usage information.In any

organization or in any system of a database,generally the

same query is executed after certain time.So every-time a

tree must be built and then a new search query is executed.

So, if we know in advance where the search is,then we can

directly go there and it will save the time and hence

decreases our cost.

ALGORITHM 2

Function: heuristics query search.

a) Once a query is run,a storage file is created.

b) Counter is set to company usage factor for each

storage file.

c) Magic tree is stored in the storage file.Maximum

number of storage files to be created is equal to

company usage factor(c.u.f).

d) When the next query is run,it first checks the

equivalence of the tree with any tree in any storage

file.

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 4

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

e) If the trees are equal,then it will go to the path of

search to the branch directly as stored in the

storage file.

1) If the search is successful than the

appropriate actions are performed.

2) If the search fails,it will search in the magic

tree.

f) If the trees are not equivalent,then it will form its

own magic tree as described in algorithm 1 and the

counter is increased.

g) Refresh the storage file if counter>c.u.f.

4 RESULT ANALYSIS

Simulation:We executed our code on Linux machine in

GCC compiler.Code is written in c and uses the concept of

file handling.Tree data structure is used with dynamic

memory allocation using linked list.

Figure 2: Query tree

Analysis: The result of the proposed idea is better as

compared with the original query search. If we had the

following query-

SELECT p.pname, d.dname

FROM Patients p, Doctors d

WHERE p.doctor = d.dname

AND d.gender = ‗M‘.

The initial tree of the following query is shown in figure

2.When this tree is converted into magic tree as shown in

figure 3,it will incur some cost,but the cost of search in the

magic tree will be less.Also the computational cost in the

magic tree decreases because of the decrease in the number

of operations.

Figure 3: Query Tree

The estimated cost of the simple tree is 100 units whereas;

the cost of magic tree is 50 units.But at the same time,there

will be some cost incurred while converting simple tree into

magic tree.Now, as we move towards the heuristics

approach,magic tree is already there in the storage

file,which will save the time of conversion and hence

reducethe cost.

Figure 4 shows the Cost vs Time graph of the old simple

query processing and with our proposed heuristic

approach. As we can see, initially the cost is high, but later

on as the time increases cost decreases. This can be

explained as follows:

Figure 4: Cost vs Time

Initially, when in database some new query comes,then all

steps of tree matching etc. are run which waste the time

and hence increasesthe cost.But later,some standard query

or duplicate query is run which matches our already built

magic tree and saves the computational time.Figure 5

shows as the query becomes nested,the result improves

significantly in our proposed heuristic approach.

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 5

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Figure 5: Performance vsComplexity

5 CONCLUSION AND FUTURE WORK

In this paper we described a novel approach of using a
heuristic function to evaluate the efficiency of a query
search in the database operations.Our simulation results
indicate the improvement in query search as against the
traditional query search. Therefore, we safely assume that
heuristic based query optimization is a better approach to
query optimization as compared to earlier query
optimization techniques that are extensively used in the
literature. With simulation run of our algorithm, further
properties of join like left join,right join etc. can be
extended.Along with these we can add some security in
optimization step if feasible.

REFERENCE

[1] A. Arasu, B. Babcock, S. Babu, J. McAlister and J.
Widom, Characterizing Memory Requirements for Queries
over Continuous Data Streams, Stanford Techinical Report,
November 2001,
http://dbpubs.stanford.edu/pub/2001-49

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously
Adaptive Query Processing, Proceedings of the 2000 ACM
SIGMOD Conference.

[3] D. Bertsekas and R. Gallager. Data Networks, Prentice
Hall, 2nd edition, 1991.

[4] S. Babu, and J. Widom, Continuous Queries over Data
Streams, SIGMOD Record, Sept. 2001.

[5] J. Chen, D. J. DeWitt, F. Tian and Y. Wang. Niagara-CQ:
A Scalable Continuous Query System for Internet
Databases, Proceedings of the 2000 ACM SIGMOD
Conference.

[6] M. Datar, A. Gionis, P. Indyk and R. Motwani,
Maintaining Strea m St tistics over Sliding Windows 2002
Ann al ACM SIAM

[7] M. N. Garofalakis and Y. E. Ioannidis. Parallel Query
Scheduling and Optimization with Time- and Space-Shared
Resources,
Proceedings of the 23rd International VLDB Conference.

[8] Polynomial Heuristics for Query Optimization Nicolas
Bruno, C´esar Galindo-Legaria, Milind Joshi Microsoft
Corp., USA

[9] Bernstein, P. A., And Goodman, N. 1981a. The Power of

Natural Semijoins.SIAMJ.Comput. 10,4, 751-771.

[10] Z. G. Ives, D. Florescu, M. Friedman, A. Levy and D. S.

Weld.An Adaptive Query Execution System for Data

Integration,Proceedings of the 1999 ACM SIGMOD

Conference

[11] Verhofstad, J. S. M. 1978. Recovery Techniques for

Database Systems.ACM Comput.Surv. 10, 2 (June), 167-195.

[12] Sockut, G. H., And Goldberg, R. P. 1979. Database

Reorganization--Principles and practice.ACM

Comput.Surv. 11, 4 (Dec.) 371-395.

[13] C. Lee, C.-H. Ke, J.-B.Chang and Y.-H. Chen.
Minimization of Resource Consumption for Multidatabase
Query Optimization,Proceedings of the 3rd IFCIS
Conference.

[14] Brodie, M., Mylopoulos, J., And Schmidt, J. W.,Eds.

1984. On Conceptual Modelling.Perspectives from Artificial

Intelligence, Databases, and Programming Languages.

Springer, New York

[15] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie and T. G. Price. Access Path Selection in a Relational
Database Management System, Proceedings of the 1979
ACM SIGMOD
Conference.

[16] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A.
Sah, J. Sidell, C. Staelin and Andrew Yu. Mariposa: A Wide-
Area Distributed Database System, VLDB Journal, 1996, (5)
1:48-63.

[17] G. Schumacher. GEI‘s Experience with Britton-Lee‘s
IDM, IWDM,1983, pp. 233-241.

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 6

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

[18] T. Urhan and M. J. Franklin.Xjoin: A Reactively-
Scheduled Pipelined Join Operator, IEEE Data Engineering
Bulletin, June 2000, (23) 2:27-33.

[19] A. N. Wilschut and P. M. G. Apers. Pipelining in Query
Execution,Conference on Databases, Parallel Architectures
and their
Applications, Miami, 1991.

[20] Prof.M.A.Pund, S.R.Jadhao, P.D.Thakare : A Role of

Query Optimization in Relational Database,International

Journal of Scientific & Engineering Research, Volume 2,

Issue 1, January-2011.

[21] Alpa Jain, PanagiotisIpeirotis, Luis Gravano,Building

Query Optimizers for Information Extraction:The SQoUT

Project

